Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(9): 4545-4566, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386509

RESUMO

Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.


Assuntos
Eletricidade , Água , Membranas Artificiais , Dessecação/métodos , Materiais Biocompatíveis
2.
Chemistry ; 30(17): e202303979, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206093

RESUMO

Aptamers are widely used in biosensing due to their specific sensitivity toward many targets. Thus, gold nanoparticle (AuNP) aptasensors are subject to intense research due to the complementary properties of aptamers as sensing elements and AuNPs as transducers. We present herein a novel method for the functional coupling of thrombin-specific aptamers to AuNPs via an anionic, redox-active poly(ferrocenylsilane) (PFS) polyelectroyte. The polymer acts as a co-reductant and stabilizer for the AuNPs, provides grafting sites for the aptamer, and can be used as a redox sensing element, making the aptamer-PFS-AuNP composite (aptamer-AuNP) a promising model system for future multifunctional sensors. The aptamer-AuNPs exhibit excellent colloidal stability in high ionic strength environments owing to the combined electrosteric stabilizing effects of the aptamer and the PFS. The synthesis of each assembly element is described, and the colloidal stability and redox responsiveness are studied. As an example to illustrate applications, we present results for thrombin sensitivity and specificity using the specific aptamer.

3.
Macromolecules ; 56(21): 8856-8865, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024158

RESUMO

Polymer brushes are widely used as versatile surface modifications. However, most of them are designed to be long-lasting by using nonbiodegradable materials. This generates additional plastic waste and hinders the reusability of substrates. To address this, we present a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization (SI-ROP) from stable PGMA-based macroinitiators. This yields polyester brush coatings (up to 50 nm in thickness) that hydrolyze with controlled patterns and can be regrown on the same substrate after degradation. We chose polyesters of different hydrolytic stability and degradation mechanism, i.e., poly(lactic acid) (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB), which are grown from poly(glycidyl methacrylate) (PGMA)-based macroinitiators for strong surface binding and initiating site reuse. Brush degradation is monitored via thickness changes in pH-varied buffer solutions and seawater with PHB brushes showing rapid degradation in all solutions. PLA and PCL brushes show higher stability in solutions of up to pH 8, while all coatings fully degrade after 14 days in seawater. These brushes offer surface modifications with well-defined degradation patterns that can be regrown after degradation, making them an interesting alternative to (meth)acrylate-based, nondegradable polymers brushes.

4.
Nanoscale ; 15(28): 11875-11883, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37395070

RESUMO

The beneficial redox properties of ferrocene-based polymers have been utilized during in situ preparation of metallic nanoparticles, while such redox features also indicate a great promise in applications as free radical scavengers. Here, colloidal dispersions of an antioxidant nanozyme composed of amidine-functionalized polystyrene latex (AL) nanoparticles, negatively charged poly(ferrocenylsilane) (PFS(-)) organometallic polyions, and ascorbic acid (AA) were formulated. The AL was first functionalized with PFS(-). Increasing the polymer dose resulted in charge neutralization and subsequent charge reversal of the particles. The strength of repulsive interparticle forces of electrostatic nature was significant at low and high doses leading to stable colloids, while attractive forces dominated near the charge neutralization point giving rise to unstable dispersions. The saturated PFS(-) layer adsorbed on the surface of the AL (p-AL nanozyme) enhanced the colloidal stability against salt-induced aggregation without affecting the pH-dependent charge and size of the particles. The joint effect of PFS(-) and the AA in radical decomposition was observed indicating the antioxidant potential of the system. The immobilization of PFS(-) deteriorated its scavenging activity, yet the combination with AA improved this feature. The results indicate that p-AL-AA is a promising radical scavenger since the high colloidal stability of the particles allows application in heterogeneous systems, such as in industrial manufacturing processes, where antioxidants are required to maintain acceptable product quality.

5.
ACS Appl Polym Mater ; 5(3): 1955-1964, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36935655

RESUMO

A series of cyclomatrix polyphosphazene films have been prepared by nonaqueous interfacial polymerization (IP) of small aromatic hydroxyl compounds in a potassium hydroxide dimethylsulfoxide solution and hexachlorocyclotriphosphazene in cyclohexane on top of ceramic supports. Via the amount of dissolved potassium hydroxide, the extent of deprotonation of the aromatic hydroxyl compounds can be changed, in turn affecting the molecular structure and permselective properties of the thin polymer networks ranging from hydrogen/oxygen barriers to membranes with persisting hydrogen permselectivities at high temperatures. Barrier films are obtained with a high potassium hydroxide concentration, revealing permeabilities as low as 9.4 × 10-17 cm3 cm cm-2 s-1 Pa-1 for hydrogen and 1.1 × 10-16 cm3 cm cm-2 s-1 Pa-1 for oxygen. For films obtained with a lower concentration of potassium hydroxide, single gas permeation experiments reveal a molecular sieving behavior, with a hydrogen permeance of around 10-8 mol m-2 s-1 Pa-1 and permselectivities of H2/N2 (52.8), H2/CH4 (100), and H2/CO2 (10.1) at 200 °C.

6.
ACS Energy Lett ; 7(10): 3439-3446, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277133

RESUMO

Imidazolium cations enhance the performance of several electrodes in converting CO2 to CO in non-aqueous media. In this publication, we elucidate the origin of the function of imidazolium cations when exposed to Au electrodes in anhydrous acetonitrile in CO2 atmosphere. We demonstrate that imidazolium cations lead to unprecedentedly low overpotentials for CO2 reduction to CO on Au, with ∼100% Faradaic efficiency. By modification of the N1 and N3 functionality of the imidazolium cation, we show a direct correlation between the performance in CO2 reduction and the C2-H acidity of the cation. Based on NMR analyses, DFT calculations, and isotopic labeling, showing an inverse kinetic isotope effect, we demonstrate that the mechanism involves a concerted proton-electron transfer to the electrode-adsorbed CO2 intermediate. The demonstrated mechanism provides guidelines for improvement in the energy efficiency of non-aqueous electrochemical CO2 reduction, by a tailored design of electrolyte cations.

7.
ACS Appl Polym Mater ; 3(5): 2385-2392, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34056614

RESUMO

The successful synthesis of poly(aryl cyanurate) nanofiltration membranes via the interfacial polymerization reaction between cyanuric chloride and 1,1,1-tris(4-hydroxyphenyl)ethane (TPE), atop a polyethersulfone ultrafiltration support, is demonstrated. The use of cyanuric chloride allows for the formation of a polymer that does not contain hydrolysis-susceptible amide bonds that inherently limit the stability of polyamide nanofiltration membranes. In order to achieve a thin defect-free cross-linked film via interfacial polymerization, a sufficient number of each monomer should react. However, the reactivities of the second and third chloride groups of the cyanuric chloride are moderate. Here, this difficulty is overcome by the high functionality and the high reactivity of TPE. The membranes demonstrate a typical nanofiltration behavior, with a molecular weight cutoff of 400 ± 83 g·mol-1 and a permeance of 1.77 ± 0.18 L·m-2 h-1 bar-1. The following retention behavior Na2SO4 (97.1%) > MgSO4 (92.8%) > NaCl (51.3%) > MgCl2 (32.1%) indicates that the membranes have a negative surface charge. The absence of amide bonds in the membranes was expected to result in superior pH stability as compared to polyamide membranes. However, it was found that under extremely acidic conditions (pH = 1), the performance showed a pronounced decline over the course of 2 months. Under extremely alkaline conditions (pH = 13), after 1 month, the performance was lost. After 2 months of exposure to moderate alkaline conditions (pH = 12), the MgSO4 retention decreased by 14% and the permeance increased by 2.5-fold. This degradation was attributed to the hydrolysis of the aryl cyanurate bond that behaves like an ester bond.

8.
Langmuir ; 36(40): 12053-12060, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32997502

RESUMO

Sensor platforms can benefit from the incorporation of polymer brushes since brushes can concentrate the analyte near the sensor surface. Brushes that absorb acetone vapor are of particular interest since acetone is an important marker for biological processes. We present a simple procedure to synthesize acetone-responsive poly(methyl acrylate) brushes. Using spectroscopic ellipsometry, we show that these brushes respond within seconds and swell by more than 30% when exposed to acetone vapor. Moreover, quartz crystal microbalance measurements demonstrate that the brushes can be exploited to increase the acetone detection sensitivity of sensors by more than a factor 6. Surprisingly, we find that the swelling ratio of the brushes in acetone vapor is independent of the grafting density and the degree of polymerization of the polymers in the brush. This is qualitatively different from swelling of the same brushes in liquid environments, where the swelling ratio decreases for increasing grafting densities. Yet, it indicates that the brushes are robust and reproducible candidates for implementation in vapor sensor systems.

9.
ACS Appl Mater Interfaces ; 11(40): 37060-37068, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525020

RESUMO

Printing arrays of responsive spots for multiplexed sensing with electrochemical readout requires new molecules and precise, high-throughput deposition of active compounds on microelectrodes with spatial control. We have designed and developed new redox-responsive polymers, featuring a poly(ferrocenylsilane) (PFS) backbone and side groups with disulfide units, which allow an efficient and stable bonding to Au substrates, using sulfur-gold coupling chemistry in a "grafting-to" approach. The polymer molecules can be employed for area selective molecular sensing following their deposition by high-precision inkjet printing. The new PFS derivatives, which serve as "molecular inks", were characterized by 1H NMR, 13C NMR, and FTIR spectroscopies and by gel permeation chromatography. The viscosity and surface tension of the inks were assessed by rheology and pendant drop contact angle measurements, respectively. Commercial microelectrode arrays were modified with the new PFS ink by using inkjet printing in the "drop-on-demand" mode. FTIR spectroscopy, AFM, and EDX-SEM confirmed a successful, spatially localized PFS modification of the individual electrodes within the sensing cells of the microelectrode arrays. The potential application of these devices to act as an electrochemical sensor array was demonstrated with a model analyte, ascorbic acid, by using cyclic voltammetry and amperometric measurements.

10.
J Am Chem Soc ; 139(29): 10029-10035, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28654756

RESUMO

We report on the synthesis and structure-property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL's LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating-cooling cycles.

11.
Macromol Rapid Commun ; 37(23): 1939-1944, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27775202

RESUMO

Highly swellable, dual-responsive hydrogels, consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) based poly(ionic liquid)s (PILs) are formed by photo-polymerization. PFS chains bearing cross-linkable vinylimidazolium (VIm) side groups are copolymerized with NIPAM in aqueous solutions under ultraviolet light (λ = 365 nm) in the presence of a photoinitiator. The PFS-PILs serve as a macro-cross-linker and also provide redox responsiveness. The swelling ratio, morphology, and lower critical solution temperature (LCST) of the hydrogels are studied as a function of the PNIPAM/PFS ratio. The value of the LCST is dependent on the choice of the counterion of the PIL and the PNIPAM/PFS ratio. The hydrogel is employed as a reducing environment for the in situ fabrication of gold nanoparticles (AuNPs), forming AuNP-hydrogel composites. The localized surface plasmon resonance peak of the as-synthesized Au nanoparticles inside the hydrogel could be tuned by altering the temperature.


Assuntos
Resinas Acrílicas/química , Compostos Ferrosos/química , Hidrogéis/química , Líquidos Iônicos/química , Silanos/química , Resinas Acrílicas/síntese química , Compostos Ferrosos/síntese química , Ouro/química , Líquidos Iônicos/síntese química , Nanopartículas Metálicas/química , Estrutura Molecular , Oxirredução , Silanos/síntese química , Ressonância de Plasmônio de Superfície , Temperatura
12.
Langmuir ; 31(23): 6343-50, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25989156

RESUMO

The synthesis and characterization of electrode-supported poly(ferrocenylsilane) (PFS) films bearing iodopropyl (PFS-I) and undecanesulfonate (PFS-SO3(-)) surface moieties are presented. The redox responsiveness of these PFS films allows for controlled and repeatable switching of the surface energy of the PFS-I and PFS-SO3(-) layers under electrochemical control. Static water/surface contact angle measurements showed a change in contact angle values for PFS-I from 80° (reduced state) to 70° (oxidized state) over repeated cycles. However, an opposite change in wettability was observed for PFS-SO3(-), where the values observed varied from 59° (reduced state) to 77° (oxidized state). Nanoscale adherence was assessed with colloid probe AFM. The adhesive forces between these surfaces and a polystyrene (PS) colloid probe in water alternated between 130 nN (reduced state) and 30 nN (oxidized state) for PFS-I layers and between 75 nN (reduced) and 180 nN (oxidized) for the PFS-SO3(-) films. The reversed response of PFS-I films to oxidation compared to that of PFS-SO3(-), in both contact angles and adhesive forces, suggests a different underlying mechanism for switching. As PFS-I is tuned from the reduced to the oxidized state, positively charged ferrocenium (Fc(+)) centers that formed in the film increase its wettability and reduce its adherence to the hydrophobic colloid probe. For PFS-SO3(-) in the reduced state, the exposed alkanesulfonate moieties increase the hydrophilicity of the surface. When oxidized, the Fc(+) units attract the negatively charged sulfonate groups, which results in a bending of the sulfonate groups toward the PFS surface, exposing the undecyl spacer. This alteration of the surface chemistry reduces the surface energy and increases the adherence between the bent alkyl chains and the hydrophobic PS colloid in water. The attraction of the charged sulfonate group to Fc(+) is in competition with the counterions present in the electrolyte solution. Therefore, the backbiting of the chain can be achieved only in electrolytes where the affinity of Fc(+) for the ions is lower than for the sulfonate group, in agreement with the Hofmeister series.


Assuntos
Alcanossulfonatos/química , Compostos Ferrosos/química , Silanos/química , Tensoativos/química , Eletrodos , Eletrólitos , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Água/química , Molhabilidade
13.
Nanoscale ; 7(22): 9970-4, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25939476

RESUMO

Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to structure generation. The influence of applied bias potential, tip velocity, and multilayer thickness on the pattern height and width were investigated.

14.
Angew Chem Int Ed Engl ; 53(50): 13789-93, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25345763

RESUMO

Redox-responsive porous membranes can be readily formed by electrostatic complexation between redox active poly(ferrocenylsilane) PFS-based poly(ionic liquid)s and organic acids. Redox-induced changes on this membrane demonstrated reversible switching between more open and more closed porous structures. By taking advantage of the structure changes in the oxidized and reduced states, the porous membrane exhibits reversible permeability control and shows great potential in gated filtration, catalysis, and controlled release.

15.
Nanoscale ; 6(20): 12089-95, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25195609

RESUMO

We describe a novel approach to quantitatively visualize sub nm height changes occurring in thin films of redox active polymers upon reversible electrochemical oxidation/reduction in situ and in real-time with electrochemical imaging ellipsometry (EC-IE). Our approach is based on the utilization of a micro-patterned substrate containing circular patterns of passive (non-redox active) 11-mercapto-1-undecanol (MCU) within a redox-responsive oligoethylene sulfide end-functionalized poly(ferrocenyldimethylsilane) (ES-PFS) film on a gold substrate. The non-redox responsive MCU layer was used as a molecular reference layer for the direct visualization of the minute thickness variations of the ES-PFS film. The ellipsometric microscopy images were recorded in aqueous electrolyte solutions at potentials of -0.1 V and 0.6 V vs. Ag/AgCl corresponding to the reduced and oxidized redox states of ES-PFS, respectively. The ellipsometric contrast images showed a 37 (±2)% intensity increase in the ES-PFS layer upon oxidation. The thickness of the ES-PFS layer reversibly changed between 4.0 (±0.1) nm and 3.4 (±0.1) nm upon oxidation and reduction, respectively, as determined by IE. Additionally, electrochemical atomic force microscopy (EC-AFM) was used to verify the redox controlled thickness variations. The proposed method opens novel avenues to optically visualize minute and rapid height changes occurring e.g. in redox active (and other stimulus responsive) polymer films in a fast and non-invasive manner.

16.
J Am Chem Soc ; 136(22): 7865-8, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24834958

RESUMO

Robust, dense, redox active organometallic poly(ferrocenylsilane) (PFS) grafted films were formed within 5 min by cathodic reduction of Au substrates, immersed in a solution of imidazolium-functionalized PFS chains in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. The electrografted polymer films were employed as an electrochemical sensor, exhibiting high sensitivity, stability, and reproducibility.

17.
Soft Matter ; 10(17): 3134-42, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24695793

RESUMO

Using a combination of ellipsometry and friction force microscopy, we study the reversible swelling, collapse and variation in friction properties of covalently bound poly(N-isopropylacrylamide) (PNIPAM) layers on silicon with different grafting densities in response to exposure to good solvents and co-nonsolvent mixtures. Changes in the thickness and segment density distribution of grafted films are investigated by in situ ellipsometry. Based on quantitative modelling of the ellipsometry spectra, we postulate a structural model, which assumes that collapse takes place in the contacting layer between the brush and the co-nonsolvent and the top-collapsed brushes remain hydrated in the film interior. Using the structural model derived from ellipsometry spectra, we analyse the AFM based friction force microscopy data, which were obtained by silica colloidal probes. Results show a large increase of the friction coefficient of PNIPAM grafts when the grafts swollen by water are brought in contact with co-nonsolvents. For instance, the value of the friction coefficient for a medium density brush in water is four times lower than the value observed in a water-methanol (50% v/v) mixture. This increase of friction is accompanied by an increase in adherence between the PNIPAM chains and the silica colloidal probes, and is a result of chain collapse in the graft when contacted by a co-nonsolvent mixture in agreement with the model postulated on the basis of ellipsometric characterisation. The kinetic behaviour of the collapse is assessed by measuring the temporal variation of friction in situ as a function of elapsed time following contact with the co-nonsolvent as a function of graft density. In conclusion, the effect of co-nonsolvency influenced both the thickness of the PNIPAM brushes and the tribological behavior of the brush surfaces.

18.
Chem Commun (Camb) ; 50(23): 3058-60, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24515091

RESUMO

We describe a novel and versatile method for the fabrication of poly(ferrocenylsilane) (PFS) based microspheres using microfluidics. Cross-linked microgel particles were obtained by UV-induced crosslinking of precursor droplets. By variations in the substitution of the silane units of PFS, organogel as well as hydrogel particles were prepared. Applications of these redox active microspheres to form in situ Ag nanoparticles, as well as loading and release of guest molecules were demonstrated.


Assuntos
Compostos Ferrosos/química , Géis/química , Silanos/química , Microfluídica/métodos , Oxirredução , Tamanho da Partícula , Raios Ultravioleta
19.
J Am Chem Soc ; 136(1): 330-5, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24308639

RESUMO

Macromolecular networks consisting of homogeneously distributed covalently bonded inorganic and organic precursors are anticipated to show remarkable characteristics, distinct from those of the individual constituents. A novel hyper-cross-linked ultrathin membrane is presented, consisting of a giant molecular network of alternating polyhedral oligomeric silsesquioxanes and aromatic imide bridges. The hybrid characteristics of the membrane are manifested in excellent gas separation performance at elevated temperatures, providing a new and key enabling technology for many important industrial scale applications.

20.
Langmuir ; 29(24): 7257-65, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23311998

RESUMO

Poly(ferrocenyl(3-bromopropyl)methylsilane) and poly(ethylene imine) are employed in a layer-by-layer deposition process to form covalently connected, redox-active multilayer thin films by means of an amine alkylation reaction. The stepwise buildup of these multilayers on silicon, ITO, and quartz substrates was monitored by UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), static contact angle measurements, surface plasmon resonance (SPR), atomic force microscopy, ellipsometry, and cyclic voltammetry, which provide evidence for a linear increase in multilayer thickness with the number of deposited bilayers. Upon oxidation and reduction, these covalently interconnected layers do not disassemble, in contrast to poly(ferrocenylsilane) (PFS) layers featuring similar backbone structures that are held together by electrostatic forces. The PFS/PEI multilayers are effective for the electrochemical sensing of ascorbic acid and hydrogen peroxide and show improved sensing performance at higher bilayer numbers. These covalently linked layers are readily derivatized further and can therefore be regarded as a versatile platform for creating robust, tailorable, redox-active interfaces with applications in sensing and biofuel cells.


Assuntos
Polímeros/química , Microscopia de Força Atômica , Oxirredução , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...